
Real-Time Collaborative Virtual 
Reality Across the Continent

Bohan Wu   |  Brandon Fremin  |  Junjie Lei  |  Melody Hsu

1



Virtual Reality

● Computer generated simulated 
experience or environment

● Fully immersive through artificially 
constructed images and sounds

● Uses equipment such as a 
headset and controllers fitted with 
sensors

● Applications in business, 
education, art, entertainment, etc.

3



Oculus Specifications

● 2 controllers + 1 headset
● 72 Hz frame refresh rate
● Must be connected with a Facebook 

account
● Local storage of apps and games that can 

be downloaded/uploaded
● Connects to Wi-Fi

○ Limitation: unable to connect to Wi-Fi 
networks that require 2-factor 
authentication 

4



Oculus Game Demonstration 

5

https://docs.google.com/file/d/1QxD2dULP_l2RSTG5ScpBNf-OlovHr7XC/preview


Components (Controllers, Cameras, 
Processing) 

● Tracks user movement (controllers)

● Tracks surrounding play area (4 headset cameras)

● Qualcomm Snapdragon XR2 Platform (little endian)
6



Problems

How do we ensure that users in the same virtual space are 
experiencing events and interacting at the same time?

How do we deal with conflicting updates from different clients?

7



Project Goals 
● Develop simple multiplayer app for Oculus Quest 2 in which players can 

interact in real-time (<65 ms latency) from any two locations in the 
continental United States.

● All players see a consistent state of the world

● App is extensible to generic VR Headset use cases

8



Develop 3D game 
environment for 

the Oculus Quest 2

Setup server(s) to 
send/receive 

packets to/from 
Oculus in the 

game environment

Enable multiple 
players to join 

environment and 
interact

Use Spines 
infrastructure to 
impose latencies 
on server-server 
communication

01 02 03 04

Approach

9



TABLE OF CONTENTS
01 Background

Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction 
Problem Approach

Singleplayer & 
Multiplayer

Message Structures
Protocol Buffers
Synchronous Delivery

03

Communication Architecture04

Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit 
Control Flow and Scripts

02
Spines
Introduction
Latency Graph & Reconstruction
Soft Real-time vs Source Based

05

Demonstration06
Metrics & Statistics
Limitations & Improvements

10



Unity Game Engine
● Cross platform game engine

● Supports desktop, mobile, console, and virtual reality platforms

● Game development for iOS and Android

○ Inclusive of 2D and 3D games, simulations, and experiences 

● Scripting API in C# language

● Deployed as Android File ( .apk )

11



Unity GameObject
● GameObjects: Components in UnityEngine 

○ Transform = (Position/Rotation)

■ Represented as 7 floats

12



Extended Reality — XR Toolkit
● Camera rig

○ Track the user’s head 
movement to render the 
camera view.

● Controller 
● Locomotion system
● Ray interactors
● Debugger UI Canvas 

○ UI overlay used to output 
log onto the camera.

13



Unity Engine (Lifecycle Control Flow)

OFF

ACTIVE

IDLE

Start()

OnApplicationQuit()

Start()

OnEnable()

OnDisable()

OnApplicationQuit()

Update()

14



TABLE OF CONTENTS
01 Background

Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction 
Problem Approach

Singleplayer & 
Multiplayer

Message Structures
Protocol Buffers
Synchronous Delivery

03

Communication Architecture04

Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit 
Control Flow and Scripts

02
Spines
Introduction
Latency Graph & Reconstruction
Soft Real-time vs Source Based

05

Demonstration06
Metrics & Statistics
Limitations & Improvements

15



Single Player

16

All code runs within 
the Oculus headset



Single Player (Video Only)

17



Unity Engine Rendering Frames

● Unity Engine’s main loop takes 
care of rendering

● Frames rendered every 16 ms 
(60 frames/sec)

○ Clock starts upon app 
startup

○ Read from local state

○ Rendered for every user

18



Single Player (Controller Inputs)

19



Headset, Left Controller, Right Controller
● Headset

○ Transform (7 floats)
○ Buttons (3 x 1 bools)

● Left/Right Controller
○ Transform (7 floats)
○ Joystick (2 floats)
○ Triggers (2 x 1 floats)
○ Buttons (6 x 1 bools)

● Controller data is sampled at a rate 
greater than 1 kHz

● Unity handles read/write atomicity
● Input thread can handle controller 

sampling errors, estimate 
velocity/acceleration, smooth out 
reading

20



Single Player (Continuous and Discrete Inputs)

21



Single Player (Discrete Inputs)

● Buttons have boolean values 
○ 0 → unpressed
○ 1 → pressed

● Many ways to press a button
○ onUp
○ onDown
○ onPressAndHold
○ onDoubleClick 1 - button 

pressed

22



Multiplayer (Single Server)

23



Heartbeat Thread

● Heartbeat Messages (Client-Server Ping)
● Metrics Messages

24



Receive Thread

● World Messages
● Heartbeat Messages
● Syn Messages
● Presence Messages
● RPC Messages
● Statistics Messages

25



Multiplayer Write Conflicts

26



TABLE OF CONTENTS
01 Background

Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction 
Problem Approach

Singleplayer & 
Multiplayer

Message Structures
Protocol Buffers
Synchronous Delivery

03

Communication Architecture04

Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit 
Control Flow and Scripts

02
Spines
Introduction
Latency Graph & Reconstruction
Soft Real-time vs Source Based

05

Demonstration06
Metrics & Statistics
Limitations & Improvements

27



Client-Server Communication

28



Client-Server Communication

29



Client-Server Communication (Protobuf)

30



Client-Server Communication (Protobuf)

31

● Language independent
● Backwards compatibility/Implementation advantage
● Good performance

New field



Client-Server Communication (Protobuf)

32

Protobuf (C#)
Protobuf (C)



Message Structure

33



Multiplayer + Single Server

34



Server State

● Players
○ Logistical information: ID, Name, IP 

Address/Port, Ingest Server
○ Pose Information

■ Headset Transform
■ Left Controller Transform
■ Right Controller Transform
■ Offset

○ Movement Information
■ Body Velocity (Left Joystick)

● Items
○ Ownership
○ Item Transform
○ Item Velocity (Right Joystick)

35



Interactivity

all players synchronously 
feel controller rumbles

object “owner” alone can 
move it – all others see its 
position changing

HAPTIC 
FEEDBACK

cylinder changes color to 
match the avatar of player 

who sent request INTERACTABLE 
SPHERE
claim possession of a 
common object and change 
its position

motion indicates that 
server is active

36

REVOLVING 
SPHERE



Multiplayer + Multiple Servers

37



Multiplayer (Fortnite)

A lot of updates → Flooding
● 100 players in one game

Limited computing power  → Efficiency matters
● 116 million people played Fortnite on iOS devices.

Updates not needed  → Send cumulative updates
● Client render every 16 ms for 60Hz refresh rate

38



Multiplayer + Multiple Servers + Aggregator

39



Priority Queue

40



Minimum Priority Queue

● Minimum priority queue is used 
for ordering stamped messages. 

● Binary heap data structure: 

○ O(1) find-min, O(log(n)) insert, 
O(log(n)) remove

○ Complete binary tree

○ Parent Key <= Child Keys

41



Minimum Priority Queue (Insert)

42



Minimum Priority Queue (Insert)

43



Minimum Priority Queue (Insert)

44



Minimum Priority Queue (Remove)

45



Minimum Priority Queue (Remove)

46



Minimum Priority Queue (Remove)

47



Minimum Priority Queue (Remove)

48



Minimum Priority Queue (Remove)

49



Synchronous Delivery

● 1 ms loop checks priority 
queue for new requests to be 
processed

○ All messages with 
timestamps older than 
65 ms are handled

● Queue messages are 
ordered by:

1) timestamp (us) given at 
ingest server

2) message digest
3) message size
4) literal message bytes

50



Client, Server, Overlay

51



Client, Server, Spines

52



TABLE OF CONTENTS
01 Background

Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction 
Problem Approach

Singleplayer & 
Multiplayer

Message Structures
Protocol Buffers
Synchronous Delivery

03

Communication Architecture04

Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit 
Control Flow and Scripts

02
Spines
Introduction
Latency Graph & Reconstruction
Soft Real-time vs Source Based

05

Demonstration06
Metrics & Statistics
Limitations & Improvements

53



Emulating 
Continental 

United States

54



About Spines

55

● Generic Infrastructure for dynamic, multi-hop network
○ Unicast & Multicast & Anycast
○ Automatic reconfiguration

● Instantiate network topology
○ Initialize each node and tell its direct neighbors
○ Set bi-directional links between neighbors with bandwidth, latency, loss 

rate, and burst rate information
○ Spines will compose the latency graph and learn the best routes from each 

node to any other nodes

More about Spines Infrastructure at Spines.org & DSN Lab @ JHU

http://spines.org
https://www.cnds.jhu.edu/


Spines Overlay

● Link Protocols
○ UDP_LINKS

○ RELIABLE_LINKS

○ SOFT_REALTIME_LINKS

○ INTRUSION_TOL_LINKS

56



Spines 
Daemons

57



TABLE OF CONTENTS
01 Background

Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction 
Problem Approach

Singleplayer & 
Multiplayer

Message Structures
Protocol Buffers
Synchronous Delivery

03

Communication Architecture04

Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit 
Control Flow and Scripts

02
Spines
Introduction
Latency Graph & Reconstruction
Soft Real-time vs Source Based

05

Demonstration06
Metrics & Statistics
Limitations & Improvements

58



Demonstration

Select name and 
location

User 
Interface

Statistics 
Panel

Revolving 
Sphere

59

Join lobby

View present 
players

View ping times 
with server

Indicates if the 
server is running

Movement

Controlled by left 
joystick



PRIMARY
TRIGGERresponsible for sending 

haptic feedback

RIGHT sends to all players 
in the lobby

interact with buttons and 
objects within range of 
raycasters

60



Right primary 
button sends 

haptic request

Haptics Cylinder

61

Right controller 
rumbles locally 

immediately after 
sending request

All players’ left 
controllers rumble 

in synchrony 65 ms 
after any haptic 

request

Right trigger button 
claims possession

Interactable Sphere
Right joystick 

moves claimed 
sphere 

forward/backward



Client-Server Ping Times

62

PLAYER DATA 
CENTER

PING
(ms)

STANDARD 
DEVIATION

(ms)

JUNJIE SJC 2.4 1.0

MELODY DFW 2.1 0.8

BOHAN ATL 2.3 0.9

BRANDON NYC 2.3 1.4



Receiving Player Messages (SJC)

63

DATA 
CENTER

EXPECTED 
LATENCY 

(ms)

OBSERVED 
LATENCY 

(ms)

STANDARD 
DEVIATION

(ms)

SJC 0 0 0

DFW 17 19.1 0.05

ATL 25.5 27.3 0.05

NYC 33 34.3 0.04



Delivering Player Messages (SJC)

64



Receiving Player Messages (DFW)

65

DATA 
CENTER

EXPECTED 
LATENCY 

(ms)

OBSERVED 
LATENCY 

(ms)

STANDARD 
DEVIATION 

(ms)

SJC 17 19.1 0.05

DFW 0 0 0

ATL 8.5 8.1 0.04

NYC 18 20.0 0.10



Delivering Player Messages (DFW)

66



Receiving Player Messages (NYC)

67

DATA 
CENTER

EXPECTED 
LATENCY 

(ms)

OBSERVED 
LATENCY 

(ms)

STANDARD 
DEVIATION 

(ms)

SJC 33 35.0 0.09

DFW 18 20.0 0.10

ATL 9.5 11.0 0.10

NYC 0 0 0



Delivering Player Messages (NYC)

68



Receiving Player Messages (ATL)

69

DATA 
CENTER

EXPECTED 
LATENCY 

(ms)

OBSERVED 
LATENCY 

(ms)

STANDARD 
DEVIATION 

(ms)

SJC 25.5 27.3 0.05

DFW 8.5 8.1 0.04

ATL 0 0 0

NYC 9.5 11.0 0.09



Delivering Player Messages (ATL)

70



Delivering Player Messages (All Servers)

71



Existing delay between server 
delivery and client delivery

Implement the server to deliver 
messages immediately while 
the client handles the 
synchronization delay. All 
clients would run a clock 
synchronization algorithm

LIMITATION IMPROVEMENT

72



2 31 2 3

Clients render at different offset times Force the Oculus to skip a 
frame in order to synchronize 
frame rendering

LIMITATION IMPROVEMENT

73

1

Update

Render 
Update

Render 
Update

Blue and Orange 
out of sync for 8 ms

Time (ms)

Blue 
Player 
Starts

Orange 
Player 
Starts



Minimum priority queue data 
structure runs in log(n) 

Use a bucketed array of size 
1000 instead, which would 
have O(1) insert and lookup 
times.

LIMITATION IMPROVEMENT

74



Packet losses are not handled Implement server state 
reconciliation, in which servers 
periodically send states to one 
another about the players in 
the lobby and the state of the 
world objects

LIMITATION IMPROVEMENT

75



76

Questions?


