Real-Time Collaborative Virtual
Reality Across the Continent

Bohan Wu | Brandon Fremin | Junjie Lei | Melody Hsu

Virtual Reality

e Computer generated simulated
experience or environment

e Fully immersive through artificially
constructed images and sounds

e Usesequipment such asa
headset and controllers fitted with
sensors

e Applications in business,
education, art, entertainment, etc.

Oculus Specifications

2 controllers + 1 headset
72 Hz frame refresh rate

Must be connected with a Facebook
account

Local storage of apps and games that can
be downloaded/uploaded

Connects to Wi-Fi

o Limitation: unable to connect to Wi-Fi
networks that require 2-factor
authentication

Oculus Game Demonstration

https://docs.google.com/file/d/1QxD2dULP_l2RSTG5ScpBNf-OlovHr7XC/preview

Components (Controllers, Cameras,
Processing)

e Tracks user movement (controllers)

e Tracks surrounding play area (4 headset cameras)

B & Check for Objects in Play Area

P‘ ’R’edraw
-

C

e Qualcomm Snapdragon XR2 Platform (little endian)

Problems

How do we ensure that users in the same virtual space are
experiencing events and interacting af the same time?

How do we deal with conflicting updates from different clients?

I Project Goals

e Develop simple multiplayer app for Oculus Quest 2 in which players can
inferact in real-time (<65 ms latency) from any two locations in the

continental United States.

e All players see a consistent state of the world

e App is extensible to generic VR Headset use cases

Approach

Develop 3D game Setup server(s)to Enable multiple Use Spines
environment for send/receive players to join infrastructure to
the Oculus Quest 2 packets to/from environmentand impose latencies
Oculus in the interact on server-server

game environment communication

TABLE OF CONTENTS

OI Background
Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction
Problem Approach

02 Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit
Control Flow and Scripts

03 Singleplayer &
Multiplayer

Communication Architecture

Message Structures
Protocol Buffers
Synchronous Delivery

Spines

Introduction

Latency Graph & Reconstruction
Soft Real-time vs Source Based

Demonstration
Metrics & Statistics
Limitations & Improvements

Unity Game Engine
e Cross platform game engine
e Supports desktop, mobile, console, and virtual reality platforms
e Game development for iOS and Android
o Inclusive of 2D and 3D games, simulations, and experiences

e Scripting API in C# language

e Deployed as Android File (.apk) @ u n it

7 "

Unity GameObject

e GameObjects: Components in UnityEngine

O Inspector

o Transform = (Position/Rotation) @, - cwe

Tag Untagged ¥ Layer Default

Transform

m Represented as 7 floats

Bl cube (MeshFilter)

B v MeshRenderer

¥ v Box Collider
Transform prL [#] Config (Script)

Transform
Shader Standard

Add Component

12

Extended Reality — XR Toolkit

Camerarig
o Track the user’'s head
movement to render the

: S
camera view. T
Controller MiNIMap o
Locomotion system STATISTICS o s
Ray inferactors i A e
Debugger UI Canvas o

o Ul overlay used to output
log onto the camera.

13

Unity Engine (Lifecycle Control Flow)

OnApplicationQuit()

Start()

Start() OnApplicationQuit()

OnEnable()

OnDisable()

Update()

14

TABLE OF CONTENTS

OI Background
Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction
Problem Approach

02 Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit
Control Flow and Scripts

03 Singleplayer &
Multiplayer

Communication Architecture

Message Structures
Protocol Buffers
Synchronous Delivery

Spines

Introduction

Latency Graph & Reconstruction
Soft Real-time vs Source Based

Demonstration
Metrics & Statistics
Limitations & Improvements

Single Player

All code runs within
the Oculus headset -

16

I Single Player (Video Only)

Oculus

i _ e _ &
Client

16 ms
S—- '@——w ey |

Write s 2 Read :
Player | \ Unity Engine Client
View | State |
L e e

L. s _ . = J

17

e Unity Engine’'s main loop takes
care of rendering

e Frames rendered every 16 ms
(60 frames/sec)

o Clock starts upon app
startup

o Read from local state

o Rendered for every user

Unity Engine Rendering Frames

Player
View

-

Oculus

Write S .
4_“ Unity Engine
|

Resd Client
State
e

L.

Client

=1

1

J

18

Single Player (Controller Inputs)

Lefthand
Controller

Client

= - = B
Input
Controller I |
@ State Thread
Righthand ke = — = -
Controller
N |

19

Headset, Left Controller, Right Controller

e Headset
o Transform (7 floats) Qenlus
o Buttons (3 x 1 bools) T e

e Left/Right Controller) | s
o Transform (7 floats) — gL > i Cf T
o Joystick (2 floats) J“”i,_‘ Unity Engine
L

o Triggers (2 x 1 floats)
o Buttons (6 x 1 bools) -
e Controller data is sampled at a rate
greater than 1 kHz
e Unity handles read/write atomicity
e Inputthread can handle controller
sampling errors, estimate
velocity/acceleration, smooth out
reading

Lefthand
Controller

Controller
State

Righthand
Controller

20

Single Player (Continuous and Discrete Inputs)

Oculus

r - - _ - - n
|

I

|

|

| Client

e, | TN

Writ Read .
Player <£,—| Unity Engine ea Client
View State
e J
[Write |
Lefthand o i Write
Controller ¥ S —e
| X |
| Continuous Discrete Event
Controller Data Thread Thread
State I |
Righthand I R [
Controller T
Event
= p— p— p— p— — J

21

Single Player (Discrete Inputs)

Axis2D Primary Thumbstick
e Buttons have boolean values W A e
o 0 — unpressed \]
o 11— pressed

Button.Start

e Many ways to press a button
o onUp
o onDown
o onPressAndHold
o onDoubleClick

Axis1D.PrimaryindexTrigger

Axis1D.PrimaryHandTrigger

22

Multiplayer (Single Server)

Oculus
[T T s e pr e TR S
Client
<lms | |
ey el |
Headset < T T 0 f— 17 |
Player 4r_'_| Unity Engine yinite Receive |
View Thread
<l ms | L- — _J L . _J |
™~ Left hand | . |
Controller — @ Receive |
T TN 7/ TN I
Continuous Discrete Event Heartbeat
; Controller Data Thread Thread Thread |
Right hand
Controller Bl [L J [| L J I
| Send T Send Send |
Event
e - 1 — — - 4 - 4 _1J
, 5 " J
—’[Server s

23

Heartbeat Thread

Oculus
F—————————_— —— —— ——
Client
<1 ms: |

om

Headset << I 0 17
Write) Wit .
Player 4—|—‘ Unity Engine Client e Receive
View State Thread

[. —— e o]
Left hand |)
Controller I B @ Receive

| TN [- N

Read Continuous Discrete Event Heartbeat
=— Controller Data Thread Thread Thread
ight han

Controller State | e J e ___J e J

I Send T Send Send

= ent.
g e | I |
Y
Server

e Heartbeat Messages (Client-Server Ping)
e Metrics Messages

24

Receive Thread

Oculus
[T T e e o o e EASSSMESREESIRDISESSIES SEES o)
Client
<lms I |
| (i ma), |
Headset <= l T TN f— — 1 |
Writ i .
Player . Unity Engine Wit Receive |
View Thread

e World Messages { <1 ms;l l L J L J |
e Heartbeat Messages [off hisnd | = |
e Syn Messages Controller | s @ Receive |
e Presence Messages — T f— — /1 — T/ |

e RPC Messages i Continuous Discrete Event Heartbeat |
e Statistics Messages Right hand Controller Data Thread Thread Thread |
Controller [L J e J L _J l
— I Send T Send Send |
C__— J cee——— | 1 13

v .
> Server

25

Multiplayer Write Conflicts

Oculus

I@ _ ¥ Conflict 73
Headset - ey —
Write |

Player <—'—| Unity Engine

View

Write Receive
Thread
T

-
|

I

|

I

|

| : Receive l

¢ Writ

Sms_J_%Nme r E'I ®__'I !
|

I

|

J

Client
<1l ms

" Resolve

Left hand
Controller

H Right hand

Controller

Data Thread Thread Thread

| L ——J e J L_—____J
T Send Send

Controller
State

Continuous Discrete Event I Heartbeat |

| Send

« 4 N N —

|

A4

Server

26

TABLE OF CONTENTS

OI Background
Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction
Problem Approach

02 Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit
Control Flow and Scripts

03 Singleplayer &
Multiplayer

Communication Architecture

Message Structures
Protocol Buffers
Synchronous Delivery

Spines

Introduction

Latency Graph & Reconstruction
Soft Real-time vs Source Based

Demonstration
Metrics & Statistics
Limitations & Improvements

<1l ms

D

Headset

A

Y
P ‘

J7]

Client-Server Communication

Write
Player 4—[—| Unity Engine
View
R —

r— 70

Write Receive
Thread

| EEE—

Heartbeat
Thread

e J
Send

Left hand | —
Controller | aiifis @ eceive

TN [TN

() Continuous ‘ Discrete Event

Data Thread Thread
Right hand Cosr;tar?éler
Controller L J |G |

| Send T Send
Event:

Oculus

< <
Player Client
View State
¢
- Receive
Event;[IHpHt] [Thread]
A

Server

28

Client-Server Communication

Oculus

16 ms

< <
Player | & Unity Client
View Engine State

r
/‘\}v
\

- Receive
Event»{ It] [Thread]

A

Y

[Server]

29

Client-Server Communication (Protobuf)

Oculus

Client

S Receive
Event Input] [Thread]
)

30

Client-Server Communication

3000 _—— message WorldResponse {
B Json stream message Avatar {
il int32 player_id = 1;
ContinuousData data = 2;
}
message OwnedVec3 {
int32 owner_id = 1;
string item_name = 2;
Vector3 position = 3;

2250

1500

ns/ops

}
repeated Avatar avatars = 1;
repeated OwnedVec3 items = 2;

750

Encoding Decoding

e Language independent
e Backwards compatibility/Implementation advantage
e Good performance

(Protobuf)

message WorldResponse {
message Avatar {
int32 player_id = 1;
ContinuousData data = 2;
}
message OwnedVec3 {
int32 owner_id = 1;
string item_name
Vector3 position

n o
w N

}

repeated Avatar avatars = 1;
repeated OwnedVec3 items = 2;
message Object{

Transform transform = 1;
string object_name = 2;

}
repeated Object new_object = 3;

31

Client-Server Communication (Protobuf)

Protobuf (C#)

ADS.ContinuousRequest continuous_request = new ADS.ContinuousRequest
A

Data = new ADS.ContinuousData

{
Headset = new ADS.Transform
A
Position = new ADS.Vector3
{
X = head_pos.Xx,
Y = head_pos.y,
Z = head_pos.z
+
Rotation = new ADS.Quaternion
{
X = head_rot.x,
Y = head_rot.y,
Z = head_rot.z,
W = head_rot.w
¥
+

Oculus

N

Client
State

N
Event.

Receive
g] [Thread]

.

[Eom ol e

j
| ai—Protobu—Protobulj—

=

))

Protobuf (C)

v

rotohu;—

[;)
(Protobuf

Server

ADS__ContinuousRequestx ads_req =
ads__continuous_request__unpack(NULL,

if (ads_req == NULL) {

ads_message—>data. len,

(uint8_t*) ads_message->data.data);

ads__message__free_unpacked(ads_message, NULL);

return 1;
}

struct ContinuousRequest

req.data.headset.pos.x =
req.data.headset.pos.y =
req.data.headset.pos.z =
req.data.headset.quat.x
req.data.headset.quat.y
req.data.headset.quat.z
req.data.headset.quat.w

req;

ads_req->data->headset—>position—>x;

ads_req—>data—>headset—>position—>y;

ads_req->data—>headset->position—->z;
ads_req—>data—>headset—>rotation—>x;
ads_reg->data->headset—>rotation->y;
ads_req->data—>headset—>rotation->z;
ads_reg->data->headset—>rotation—->w;

32

Message Structure

Message
Sender ID

Type
(Data]

\

f A N\
[RPC [Syn Response]
| SynRequest | I Presence |
' Continuous ‘ , World
Headset Avatars L B
Left Controller Items
Right Controller |~ =t

33

Multiplayer + Single Server

A
[=
Client Request
Server Response
‘4
Y [
Server
Generator Message Handler
s by
Server
w J

34

Server State

e Players
o Logistical information: ID, Name, IP
Address/Port, Ingest Server
o Pose Information
m Headset Transform
m Left Controller Transform
m Right Controller Transform
m Offset
o Movement Information
m Body Velocity (Left Joystick)
e [tems
o Ownership
o Item Transform
o Item Velocity (Right Joystick)

7 35

Interactivity

REVOLVING
SPHERE

motion indicates that
server is active

HAPTIC
FEEDBACK

cylinder changes color to
match the avatar of player
who sent request

INTERACTABLE
SPHERE

claim possession of a
common object and change

>

all players synchronously
feel controller rumbles

its position

object “owner” alone can
move it — all others see its
position changing

Multiplayer + Multiple Servers

Client Request

Server Response
Start 65 ms timer

oy
{3
65 ms S
iori timeout Write
Generator Priority Queue Handler
i1 {23 State
"~ Read
Server Message Server Message

| Server

37

Multiplayer (Fortnite)

A lot of updates — Flooding
e 100 players in one game

Limited computing power — Efficiency matters
e 116 million people played Fortnite on jOS devices.

Updates not needed — Send cumulative updates
e Client render every 16 ms for 60Hz refresh rate

38

Multiplayer + Multiple Servers + Aggregator

| |

I

Client Request

Server Response Server Response
Start 65 ms timer W
65 ms

Generator Priority Queue ""jf’i‘?_f" Handler iy Aggregator

Server Message Server Message
Server

Overlay

39

Priority Queue

Client Request
Server Response Server Response

Start 65 ms timer ‘a4

Generator

Aggregator

Server Message Server Message

Server

Overlay

40

Minimum Priority Queue

e Minimum priority queue is used
for ordering stamped messages.

e Binary heap data structure:

o 01 find-min, O(log(n)) insert,
O(log(n)) remove

o Complete binary tree

o Parent Key <= Child Keys

6 8 20 11 14 22 31 45 12

Child: 3*2+1=7

Parent: (3-1)/2=1 Child: 3*2+2 =8

41

Minimum Priority Queue (Insert)

42

Minimum Priority Queue (Insert)

43

Minimum Priority Queue (Insert)

44

Minimum Priority Queue (Remove)

45

Minimum Priority Queue (Remove)

46

Minimum Priority Queue (Remove)

47

Minimum Priority Queue (Remove)

48

Minimum Priority Queue (Remove)

49

Synchronous Delivery

1 ms loop checks priority
queue for new requests to be
processed

(@)

All messages with
timestamps older than
65 ms are handled

Queue messages dre

ordered by:
1) timestamp (us) given at
ingest server
2) message digest
3) message size
4) literal message bytes

|

Client Request

Start 65 ms timer

v

Generator

65 ms

Priority Queue ‘""f.l‘i.“‘

Server Message

Server Message

Server Response
4

Handler

Server

State

Read

Server Response

Aggregator

Overlay

50

Client, Server, Overlay

I @
- Unity

Player
View

Engine

Oculus]

Generator

Server

Handler L_@
A

Queue

A

51

£y
Receive
Even i
: A)
l Server
° ° Handler
Client, Server, Spines . I SH
enerator| i
Queue

Spines
Daemon

52

TABLE OF CONTENTS

OI Background

Virtual Reality

Oculus Quest 2 and Demo
Problem Introduction
Problem Approach

02 Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit
Control Flow and Scripts

03 Singleplayer &
Multiplayer

Communication Architecture

Message Structures
Protocol Buffers
Synchronous Delivery

Spines

Introduction

Latency Graph & Reconstruction
Soft Real-time vs Source Based

Demonstration
Metrics & Statistics
Limitations & Improvements

Emulating
Continental
United States

I About Spines

e Generic Infrastructure for dynamic, multi-hop network
o Unicast & Multicast & Anycast
o Automatic reconfiguration

e Instantiate network topology
o Initialize each node and tell its direct neighbors
o Set bi-directional links between neighbors with bandwidth, latency, loss
rate, and burst rate information
o Spines will compose the latency graph and learn the best routes from each
node to any other nodes

More about Spines Infrastructure at Spines.org & DSN Lab @ JHU

——— >3

http://spines.org
https://www.cnds.jhu.edu/

Spines Overlay

e Link Protocols

©)

@)

©)

©)

UDP_LINKS
RELIABLE LINKS

SOFT REALTIME LINKS
INTRUSION TOL LINKS

Spines
Daemons

S " Client
erver = (Brandon)

Client
(Junjie)
—
/

—T— Spines
Server s (NYC)
A_‘ el B B -7 « :

/ ™ ad |

) |
Spines Spines Spines [
(SIC) [~~"1 EN) [~~~ (CHI ;
|
i N 2 /T\\ //m\\ S, :
,—5 \\// : \\\ /// \\ — :
Spines |~ _:_ N L Spines
(LAX) SO0 N T (wAs)
\\ | it \ SN
N N : 56 b il |
\ b // 3 |
N // \\ \\ ———
.| Spines o “\|| Spines
(DFW) (ATL)

Client
(Melody

)

s . Client
EIVEr <1 (Bohan)

57

TABLE OF CONTENTS

OI Background
Virtual Reality
Oculus Quest 2 and Demo
Problem Introduction
Problem Approach

02 Game Development
Unity Game Engine
Game Objects
XR Interactive Toolkit
Control Flow and Scripts

03 Singleplayer &
Multiplayer

Communication Architecture

Message Structures
Protocol Buffers
Synchronous Delivery

Spines

Introduction

Latency Graph & Reconstruction
Soft Real-time vs Source Based

Demonstration

Metrics & Statistics
Limitations & Improvements

User
Interface

Select name and
location

Join lobby

Demonstration

Statistics
Panel

View present
players

View ping times
with server

Movement

Controlled by left
joystick

Revolving
Sphere

Indicates if the
server is running

59

PRIMARY

responsible for sending
haptic feedback

RIGHT sends to all players
in the lobby

TRIGGER

interact with buttons and
objects within range of
raycasters

8)

60

Haptics Cylinder

Right primary Right controller All players’ left
button sends rumbles locally controllers rumble
haptic request immediately after in synchrony 65 ms
sending request after any haptic

request

Interactable Sphere

Right trigger button Right joystick
claims possession moves claimed
sphere
forward/backward

61

Client-Server Ping Times

PLAYER o s STEA{;']E?gﬁ
JUNJIE SJC 2.4 10
MELODY DFW 21 0.8
BOHAN ATL 23 09
BRANDON NYC 23 14

Num Pings

400 A

300

200 A

100 A

Client-Server Player Pings

I Brandon
Junjie
B Melody
I Bohan
| | q | °H | l' | r
4 6 8 10

Ping Time (ms)

62

Receiving Player

DATA EXPECTED OBSERVED STANDARD
LATENCY LATENCY DEVIATION
CENTER
(ms) (ms) (ms)
S)JC 0 0 0
DFW 17 191 0.05
ATL 25.5 273 0.05
NYC 33 343 0.04

Messages (S)C)

Num Client Requests

Receiving from Ingest Server SJC

80 A

60

40 A

20 A

ATL
CHI
DEN
DFW
LAX
NYC
WAS

10

20 30
Time Delta from Ingest (ms)

40

50

63

Delivering Player Messages (S)C)

Num Client Requests

Handling from Ingest Server S)C

25 A

20 A

15 A

10 -

60

62

ATL
CHI
DEN
DFW
LAX
NYC
Sle
WAS

64 66
Time Delta from Ingest (ms)

68

70

64

Receiving Player

DATA EXPECTED OBSERVED STANDARD
LATENCY LATENCY DEVIATION
CENTER
(ms) (ms) (ms)
S)JC 17 191 0.05
DFW 0 0 0
ATL 85 8.1 0.04
NYC 18 20.0 0.10

Messages (DFW)

Num Client Requests

o]
o
1

~
o

[+)]
o

w
o

8

W
o

N
o

=
o

o

Receiving from Ingest Server DFW

111

ATL
CHI
DEN
LAX
NYC
Sle
WAS

o

10

20 30
Time Delta from Ingest (ms)

40

50

65

Delivering Player Messages (DFW)

Num Client Requests

Handling from Ingest Server DFW

25

N
o
1

=
)]
I

(]
o
1

60

62

ATL
CHI
DEN
DFW
LAX
NYC
Sle
WAS

64 66
Time Delta from Ingest (ms)

68

70

66

Receiving Player Messages (NYC)

Receiving from Ingest Server NYC

. ATL
100 - CHI
DATA EXPECTED OBSERVED STANDARD EEE DEN
CENTER LATENCY LATENCY DEVIATION e
(ms) (ms) (ms) 80 4 . LAX
2 . SC
[F]
SJC 33 35.0 0.09 = WAS
& 60 -
DFW 18 200 0.10 2
€ 40
ATL 9.5 1.0 0.10 =
NYC 0 0 0 20 -
0 . =k, PR ,
0 10 20 30 40

Time Delta from Ingest (ms)

Delivering Player Messages (NYC)

Num Client Requests

Handling from Ingest Server NYC

35 A

30 A

25 A

20 A

15 -

10 -

60

62

ATL
CHI
DEN
DFW
LAX
NYC
S[e
WAS

64 66
Time Delta from Ingest (ms)

68

70

68

Receiving Player Messages (ATL)

DATA EXPECTED OBSERVED STANDARD
LATENCY LATENCY DEVIATION
CENTER
(ms) (ms) (ms)
S)C 25.5 273 0.05
DFW 85 81 0.04
ATL 0 0 0
NYC 9.5 11.0 0.09

Receiving from Ingest Server ATL

w [+)] ~ [e2]
o o o o
| | ! 1

Num Client Requests
-
o

CHI
DEN
DFW
LAX
NYC
Sle
WAS

10

20 30
Time Delta from Ingest (ms)

50

69

Delivering Player Messages (ATL)

Num Client Requests

Handling from Ingest Server ATL

30 A

25 A

20 A

15 A

60

62

ATL
CHI
DEN
DFW
LAX
NYC
S[e
WAS

64 66
Time Delta from Ingest (ms)

68

70

70

Delivering Player M

Num Client Requests

Num Client Requests

Handling from Ingest Server SJC

essages (All Servers

Handling from Ingest Server DFW

- ATL = ATL
254 m CHI 25 :
= DEN -
= DFW —
20 1 E LAX 204 ==
P
. NYC a -
sjc %_
15 4 - WAS & 15| b
€
K
[v]
10 A E 104
=
5 5
0 T T T 0 T
60 62 64 66 68 70 60 62 64 66 68 70
Handling from Ingest Server NYC Handling from Ingest Server ATL
30 4
e ATL . ATL
35 A N CHI = CHI
W DEN 25 =m DEN
30 B DFW s DFW
. LAX . LAX
25 - == NYC £ 20 . NYC
sjc % s)c
- WAS 2 - WAS
201 € 154
g
[v]
15 4 I3
2 10 A
10
54
5
0 T T T 0 T T T
60 62 64 66 68 70 60 62 64 66 68 70

Time Delta from Ingest (ms)

Time Delta from Ingest (ms)

A

LIMITATION

Existing delay between server
delivery and client delivery

IMPROVEMENT

Implement the server to deliver
messages immediately while
the client handles the
synchronization delay. All
clients would run a clock
synchronization algorithm

Blue
Player
Starts

LIMI

TATION IMPROVEMENT

Clients render

at different offset times Force the Oculus to skip a
frame in order to synchronize
frame rendering

1 1 Orange 2 2 3 3

PIOyer Render Render

Starts Update Update
1 3 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
] | I I N (N (N N NN N NN NN DN NN DRNN NN DN DN NN DN DN DN DN DN NN NN NN N R |

I I |
Time (ms)
Update Blue and Orange

out of sync for 8 ms

—_— /3

LIMITATION

Minimum priority queue data
structure runs in log(n)

IMPROVEMENT

Use a bucketed array of size
1000 instead, which would
have O(1)insert and lookup
times.

LIMITATION

Packet losses are not handled

IMPROVEMENT

Implement server state
reconciliation, in which servers

periodically send stafes to one
another about the players in
the lobby and the state of the
world objects

Questions?

